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S u m m a r y  

An improved procedure is presented for estimating low-dose risks from dichotomous 
animal data. Based on the multistage model of cancer, the procedure gives a maximum 
likelihood fit to the experimental data. Because the model is approximately linear in 
the low-dose range, the procedure may be considered to be a generalized method for 
linear extrapolation which uses all of the data. The extrapolation procedure is different 
from an earlier procedure based upon the multistage model in that two improved meth- 
ods are put forward for calculating statistical confidence limits. (One is a linearized ap- 
proximation of the other.) A further innovation is a recommendation for the integration 
of several data sets in the calculation of risk levels. 

I n t r o d u c t i o n  

Tox i co log i ca l  c a r c i n o g e n i c i t y  e x p e r i m e n t s  f r e q u e n t l y  have as a p r i m a r y  
goal  the  d e t e r m i n a t i o n  o f  w h e t h e r  a chemica l  will i nduce  t u m o r s  u n d e r  
given e x p e r i m e n t a l  c o n d i t i o n s .  However ,  s ince it is b e c o m i n g  inc reas ing ly  
clear  t h a t  all ca rc inogens  c a n n o t  be banned ,  i t  is also i m p o r t a n t  to  have a 
q u a n t i t a t i v e  measure  o f  t he  ca rc inogen ic  p o t e n c y  o f  a chemica l .  This  mea- 
sure o f  p o t e n c y  shou ld  be r e l a t ed  to  doses  near  to  those  e x p e r i e n c e d  b y  
humans :  Such doses  are genera l ly  m u c h  lower  t han  those  used in an exper i -  
m e n t a l  se t t ing .  

One  general  p r o c e d u r e  fo r  e s t ima t ing  p o t e n c y  involves the  f i t t ing  o f  a 
m a t h e m a t i c a l  d o s e - - r e s p o n s e  m o d e l  to  e x p e r i m e n t a l  d a t a  and p r e d i c t i n g  
low-dose  r isks f r o m  the  f i t t ed  mode l .  Such p r o c e d u r e s  are inc reas ing ly  
be ing  a p p l i e d  to  e x p e r i m e n t a l  c a r c i n o g e n i c i t y  da ta ,  and  the  o u t p u t s  f rom 
these  p r o c e d u r e s  are beg inn ing  to  be  used  in t he  r e g u l a t o r y  p rocess  [1,  2 ] .  
Since b o t h  the  h u m a n  hea l th  and  e c o n o m i c  consequences  o f  r e g u l a t o r y  
dec i s ions  can be e n o r m o u s ,  i t  is i m p o r t a n t  to  a p p l y  t he  m o s t  sc ien t i f i ca l ly  
valid r isk assessment  p r o c e d u r e s  avai lable .  

*An earlier version of this paper was accepted for publication by the Journal of En- 
vironmental Pathology and Toxicology, but was not published before that journal's 
untimely demise. Although that journal was resurrected (without notice) while this 
paper was in press, the likelihood ratio procedure of this paper is not discussed in the 
earlier version contained in that journal. 
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The purpose of this paper is to improve and extend the extrapolation 
procedure proposed by Crump et al. [3] based upon a generalization of the 
Armitage--Doll [4l multistage model of  cancer. The multistage model is 
premised upon plausible, although fairly general, assumptions regarding the 
initiation and expression of  a tumor. The resulting mathematical dose--re- 
sponse function is capable of  describing adequately a broad spectrum of  
data. 

Upper statistical confidence limits on risk calculated with the Crump et 
al. [3] procedure vary linearly with dose in the low-dose range (the low- 
dose-linearity property). There are some fairly general arguments which 
suggest that ,  in many instances, the true dose--response curve should be 
approximately linear at low doses. These arguments apply particularly to 
situations in which cancer is initiated through a chain of  genetic or epigene- 
tic events which may already be operative and producing background tumors 
in the absence of  the particular chemical under test [3, 5]. A great deal of 
mutagenicity dose--response data appear to be linear [6] , which adds ex- 
perimental support to the low-dose linear hypothesis. On the other hand, 
there is neither a convincing model of carcinogenicity nor a body of experi- 
mental evidence which suggests a more extreme dose--response behavior at 
low doses than low-dose linearity. Consequently, low-dose linearity may be 
the true state of  nature in many cases, and when low-dose linearity does not 
hold, an extrapolation based upon this property should most likely over- 
estimate, rather than underestimate, the true risks. 

Hoel et al. [7] proposed, for use on an interim basis, an extrapolation 
method based upon a simple linear interpolation between the response in 
the control group and the response in a single treated group. This method,  
although linear at low-dose, has the drawback of  being somewhat ad hoc 
and not  utilizing all the pertinent data. 

The one-hit model 

P(d) = 1 - exp[-(q0 + q,d)] (1) 

where P(d) represents the lifetime probability of  cancer when subjected to a 
continuous dose rate d, is the particular case of the multistage model in 
which there is only one stage. At low doses, the extra risk over background 
is given approximately by qld and thus is linear at low dose. This model has 
been proposed for use by the EPA in the setting of  water quality criteria [1]. 
The model has only two parameters and must always exhibit downward 
curvature everywhere. Whenever it is fit to data that  exhibit upward cur- 
vature (which is a frequent occurrence), the model may not  fit well and is 
likely to lead to overestimation of  risk in the low-dose region. To illustrate 
this phenomenon,  in Fig.1 we have fit both the one-hit model and the multi- 
stage model to data of  Graham et al. [8] on ethylenethiourea (ETU). The 
ETU data are given in Table 1. As Fig. 1 illustrates, the one-hit model appears 
to  overestimate the risk in the low-dose range. 

Other models which have been proposed for low-dose extrapolation in- 
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Fig.1. I l lu s t r a t ion  of  the  fi t  of  t he  one-h i t  mode l ,  eqn.  (1),  and  mul t i s tage  mode l ,  eqn.  
(2), t o  da ta  in Table  1. × ,  Data  p o i n t ;  - -  , mul t i s tage  f i t  to  d a t a ; - - - - - - ,  one -h i t  f i t  
to  data .  

T A B L E  1 

Inc idence  o f  t h y r o i d  ca rc inomas  in ra ts  exposed  to  E T U  [8 ] 

Die ta ry  N u m b e r  N u m b e r  o f  E x p e c t e d  n u m b e r  
c o n c e n t r a t i o n  o f  t u m o r - b e a r i n g  o f  t u m o r - b e a r i n g  
(ppm)  an imals  an imals  an imals  

One-h i t  Mul t i s tage  

0 72 2 1 1 
5 75 2 2 2 

25 73 1 4 2 
125 73 2 16  3 
250  69 16  26 15 
500  70 62 43  62 

M a x i m u m  l ike l ihood  e s t ima tes  of  m o d e l  pa rame te r s  

One-h i t  m o d e l  Mul t i s tage  m o d e l  

qo --" 0 . 0 1 2 0 9  
~, = ' 0 . 0 0 1 8 5 2  

qo = 0.02077 

ql = 0.0 

~2 = 0.0 

~ = 1.101 X 10 -s 

q4 = 1.276 X 10 -ll 
~ = 0.0 
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clude the probit  model  (Mantel et al., [9] ) and the multi-hit model [10] .  
Neither o f  these models has the low-dose-linearity property.  

The multistage model  has the form 

P ( d )  = 1 -e xp [ - (q0  + q l d  + q2d 2 + • • • + q K d K ) ]  (2) 

where qi  >~ O, i = 0, 1, . . . , K. This model  contains the one-hit model  as a 
special case and thus will always fit data at least as well as, and frequently 
much bet ter  than, the one-hit model. To illustrate, we note  from Fig.1 that  
the multistage model provides a much more satisfactory fit to the ETU data 
than the one-hit model. Thus, use of  the multistage model can provide bet ter  
descriptions of the data than the one-hit model,  while retaining the low-dose- 
linearity proper ty  of  the confidence bounds. 

The linearized procedure presented in this paper is based upon a linear 
approximation to the likelihood ratio confidence bounds which is valid for 
low doses. This me thod  improves upon the method  recommended in Crump 
et al. [3] in that  it is conceptually simpler and is not  strongly dependent  
upon the choice for  the parameter K in the multistage model. The likeli- 
hood ratio procedure presented here does not  require the linear approxima- 
t ion and will therefore  provide valid confidence limits over a greater range 
of doses. The cost of this increased fidelity is more extensive use of nonline- 
ar opt imizat ion techniques. In practice, the two methods will be indistin- 
guishable at low doses and in virtual agreement at higher doses (see Table 5). 
In particular, confidence limits from the likelihood ratio procedure are 
also linear at low doses. 

Another  improvement  over previous methods is a suggested extrapolat ion 
procedure using two or more data sets simultaneously. This procedure per- 
mits a balanced approach to extrapolat ion whenever two or more data sets 
are available from experiments with equally acceptable protocols.  

Methods 

The experimental  setting is one in which young animals are randomly 
divided into g t rea tment  groups, the ith group containing N i  animals. Ani- 
mals in the ith t rea tment  group are administered the chemical at a constant  
dose rate, di ,  until death. Let x i  represent the number  of  the total of  N i  
animals in the ith group which are determined to be tumor-bearing at death. 
Let P ( d )  represent the lifetime probabili ty of  cancer for the multistage 
model of  cancer given by eqn. (2). By extra risk over background at a dose 
rate d, we mean the quanti ty 

R ( d )  = [P(d) - P ( 0 ) ] / [ l  - P(0)]  

which represents the increase in the probabili ty of  acquiring a tumor  when 
subjected to a dose rate d, divided by the probabili ty of  remaining tumor- 
free in the absence of  the chemical. The extra  risk R ( d )  may also be inter- 
preted as the probabil i ty of  acquiring a tumor  when subjected to a dose 
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response d, given that  no tumor  would have been for thcoming in the absence 
of  the chemical insult. It is easily shown that,  for  the multistage model 

R ( d )  = 1 -e xp  [ - ( q l d  + q : d  2 + • • • + q K  d K  )] 

and at low doses, we have approximately 

R ( d )  "" q l d  (3) 

In some applications, the additional risk, A R  (d) = P(d) - P(0), is of  in- 
terest. Although we treat  only the extra risk in this paper, MLEs and con- 
fidence regions for the additional risk may be obtained through the obvious 
modifications of  the methods presented here. 

We will develop the linearized extrapolat ion method from relation (3). 
It can be seen from this approximate expression that  an upper statistical 
confidence bound for the extra risk at a low dose can be calculated simply 
by multiplying an upper confidence limit for  the linear parameter  ql by the 
dose. Similarly, a lower confidence limit for the dose d R  corresponding to a 
given extra risk R may be obtained by dividing R by the upper confidence 
limit for the parameter q~. 

The calculation of  an upper confidence limit for  ql will be based upon 
the log-likelihood of  the data. In this experimental  setting, the log-likeli- 
hood differs by a constant  not  dependent  upon the parameter  vector, 
q = (qo,  • • , q K  ), from (Ref. [3] ) 

g 
L ( ~ )  = ~2 ( X j  lnP(dj) + ( N j  - X j )  ln[1 - P ( d j ) l  } (4) 

j = l  

Let ~ (50, • . • , 0K} denote  the (nonnegative) maximum likelihood estimate 
for ~ obtained by maximizing the log-likelihood L(~). Now let the linear 
parameter be increased from ~, to a value ql* such that  when the log-likeli- 
hood is remaximized subject to  this fixed value for the linear parameter,  
the resulting maximal value L(~'*) satisfies the equation 

2 [ L ( ~ ) -  L(~*)]  = 2.70554 

where 2.70554 is the cumulative 90th percentage point  of  the chi-square 
distribution with one degree of  freedom. Using the asymptot ic  distribution 
of  the likelihood ratio [11],  it can be shown that  the value ql* so computed  
represents, under suitable regularity conditions, an asymptot ic  upper 95% con- 
fidence bound for  ql. (This approach was also used by Mantel et al. [9]) .  
Other  confidence bounds for q, are computed  in the same way using the 
appropriate point  of  the chi-square distribution with one degree of  freedom. 

It follows from eqn. (3) that  q , * d  represents an approximate upper 
95%confidence bound on the extra risk R ( d )  for a given low dose d. Like- 
wise, if the "virtually safe dose" is defined as a lower 95% confidence limit 
on the dose for which the extra risk R ( d )  is, say, 10 -s then 10-S/q, * re- 
presents a virtually safe dose. 
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The likelihood ratio extrapolat ion method is also based upon the ap- 
proximate  chi-square distribution of  the log-likelihood funct ion in eqn. (4). 
The 95% upper confidence limit on extra risk at a dose d is the largest ex- 
tra risk R '  which satisfies 

P ( d ;  ~ ' )  - P(O; q>') 
-- R '  (5)  

1 - e ( o ;  

(i.e., R ' is the extra risk at dose d based upon the parameter  vector ~') and 

215(~)  - 5 ( ~ ' ) ]  -- 2.70554 (6) 
^ 

for  some coefficient  vector ~'  = ( q ~ , . . .  , qK) where, as before, ~ is the 
maximum likelihood estimate of  the coefficient  vector q and 2.70554 is 
the 90th percentage point  of  the chi-square distribution with 1 degree of  
freedom. Similarly, the 95% lower limit on the dose d corresponding to an 
extra risk o f  R is the smallest dose d '  which satisfies 

P ( d ' ;  ~ ' )  - P(0; ~ ' )  
= R  (7) 

1 - P ( 0  ; 

i.e., d '  is the safe dose corresponding to an extra risk of  R, based upon the 
vector ~ '  which satisfies eqn. (6). Confidence limits using additional risk 
are defined analogously by replacing the expressions for extra risk in eqns. 
(5) and (7) by the corresponding expressions for additional risk. Confidence 
limits o f  other  sizes are obtained by replacing 2.70554 by the appropriate 
percentage point  of  the chi-square distribution with 1 degree of  freedom. 

If there are s > 1 data sets available for  extrapolat ion to low dose, a 
similar approach can be used. Suppose the rth data set contains the ex- 
perimental doses D l r  . . . . .  Dgrr with corresponding numbers of  animals 
N r, • • • , N g  r and numbers of  tumor-bearing animals X , r  . . . . .  X g .  To 

r . . r t "  

combine the data sets, it will be assumed that  there is a spontaneous back- 
ground parameter  qor peculiar to the rth data set but  the remaining param- 
eters ql, • • • , qK are common to all s data sets. Thus for the rth data set, 
the response probabil i ty is o f  the form 

Pr (d) = 1 -exp [ - (q0 r  + q l d  + q2d 2 + • . • + q K d g ) ]  

The log-likelihood of  the combined s data sets differs by only a constant  
from 

s qr  
L =  r ~=1= 1-~- { X j r l n P r ( d j r ) + ( N j r - X j r ) l n [ 1 - P r ( d j r ) ] }  

The statistical procedures described above for a single set of  data are ap- 
plied wi thout  change to this log-likelihood to calculate statistical confi- 
dence bounds. 

Throughout  this discussion, we have assumed that the parameter  K in 
the model (2) is known. This does not  represent an untenable restriction 



425 

because, as noted  below, the value of  K is not  critical in practice. Since 
some of  the parameters qi may be zero, K represents only an upper  bound 
to the allowable number  of  stages in the multistage model,  rather than the 
actual number  o f  stages. To permit  the greatest flexibility for  the model,  
it seems desirable to make K fairly large subject to the obvious constraint 
that  there should be no more parameters in the model than there are dose 
groups. (Even this constraint is not  absolutely necessary.) On the other  
hand, computat ional  difficulties arise if K is excessively large. Thus, we 
recommend choosing K = min(6, g - l ) .  This choice makes the number  of  
possible parameters equal to the number  o f  dose groups whenever the num- 
ber o f  dose groups is no larger than 7. In practice, this choice is no t  at all 
critical. Generally, a K value of  around 3 will yield very nearly the same 
confidence limits as larger values of  K. In this regard, the methods proposed 
here are superior to the  method  proposed by Crump et al. [3] .  The choice 
of K was a critical decision in the earlier approach. It should also be kept  in 
in mind that  in choosing K one is not  selecting the number  of  stages, but  
only setting an upper bound on the permissible number  of stages allowed 
in fitting the model. 

As a heuristic measure of  the goodness of  fit of  the multistage model,  
Crump and Watson [ 12] suggest the chi-square statistic 

g [Xi-NiP(di)]  2 

~=~ NiP(di) [1-P(di)] 

Assessing the statistic is difficult due to the non-standard situation result- 
ing from the nonnegativity constraints on the multistage coefficients q l, • • •,  
qK" Crump and Watson suggest comparing the statistic with the critical value 
of  the chi-square distribution with degrees of  f reedom equal to g - (number  
of qis whose MLEs are positive). For  example, if g = 5, K = 4, and only q0 
and ql are positive, the degrees of  f reedom would be taken to be 3. This 
approach would lead to a theoretically valid goodness-of-fit test if it were 
known a priori that  the qi values with zero MLEs were truly zero and that  
all o ther  qi values were truly positive. 

Examples and discussion 

To illustrate the properties of  the extrapolat ion methods as recommended 
for a single data set, we have applied them to the data for ETU in Table 1 
and to the data for  hexachlorobenzene (HCB) in Table 2. The two data sets 
are representative of  two distinct situations; the HCB data exhibit  downward 
curvature and are described well by both the one-hit and multistage models, 
whereas the ETU data exhibit  strong upward curvature and are described 
very adequately by the multistage model,  but  very poorly by the one-hit 
model (see Fig.l) .  Maximum likelihood estimates of  additional risk and 
upper 95% confidence limits thereon are presented in Table 3 for  HCB 
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T A B L E  2 

T u m o r  inc idence  in male  hams te r s  exposed  to  HCB in t he  d ie t  [ 13 ]  

Die ta ry  N u m b e r  N u m b e r  o f  E x p e c t e d  n u m b e r  
c o n c e n t r a t i o n  o f  t u m o r - b e a r i n g  o f  t u m o r - b e a r i n g  
( p p m )  an imals  an imals  an imals  

One-h i t  Mul t is tage  

0 40  3 3 3 
50 30 18 20 19 

100 30 27 26 26 
200  57 56 56  56 

M a x i m u m  l ike l ihood  es t ima tes  o f  m o d e l  pa rame te r s  

One-h i t  m o d e l  Mul t is tage  m o d e l  

q0 = 0 . 0 7 5 5 2  q0 = 0 . 0 7 6 7 8  
/~1 = 0 .01975  ql = 0 . 0 1 7 7 3  

q2 = 1 .589 × 10 -s 
~ = 0.0 

T A B L E  3 

Es t ima tes  o f  low-dose risk f rom HCB male  hams te r s  der ived f r o m  t h e  one-h i t  and  mul t i -  
stage mode l s  

Dose level M a x i m u m  l ike l ihood  95% Uppe r  c o n f i d e n c e  
( p p m )  es t imates  of  l imits  o n  

ex t ra  risk ex t ra  risk 

Mul t i s tage  One-h i t  Mul t i s tage  One-h i t  
mode l  m o d e l  mode l  m o d e l  

10 ̀ 2 1.8 x 10  -4 2.0 x 10 -4 2.5 x 10  -4 2.5 x 10 -4 
10 -3 1.8 x 10 -5 2.0 x 10  -s 2.5 x 10 -s 2.5 x 10 -s 
10 -4 1.8 X 10 -6 2.0 x 10  .6 2.5 X 10 -6 2.5 X 10 -6 
10 -s 1.8 X 10 .7 2.0 x 10 .7 2.5 X 10 .7 2.5 x 10 .7 

u s i n g  b o t h  t h e  o n e - h i t  a n d  m u l t i s t a g e  m o d e l s .  ( F o r  a l l  d o s e s  c o n s i d e r e d  i n  

T a b l e  3 ,  t h e  m u l t i s t a g e  m o d e l  c o n f i d e n c e  l i m i t s  b a s e d  u p o n  t h e  l i n e a r i z e d  

a n d  t h e  e x a c t  e x t r a p o l a t i o n  m e t h o d s  w e r e  i n  a g r e e m e n t  u p  t o  a t  l e a s t  t h r e e  

s i g n i f i c a n t  d i g i t s . )  T h e  m e t h o d o l o g y  f o r  t h e  o n e - h i t  m o d e l  w a s  e x a c t l y  as  
d e s c r i b e d  e a r l i e r  i n  t h e  p a p e r  f o r  t h e  m u l t i s t a g e  m o d e l  e x c e p t  f o r  s e t t i n g  

K = 1.  T h e  m a x i m u m  l i k e l i h o o d  e s t i m a t e s  o f  r i s k  a r e  v e r y  c l o s e  t o g e t h e r  f o r  

t h e  t w o  m o d e l s  a n d  t h e  u p p e r  c o n f i d e n c e  b o u n d s  a r e  i n d i s t i n g u i s h a b l e .  

T h i s  i l l u s t r a t e s  s o m e  v e r y  i m p o r t a n t  p r o p e r t i e s  o f  t h e  m u l t i s t a g e  e x t r a p o l a -  

t i o n  p r o c e d u r e s .  
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Multistage extrapolation will never yield low dose risk estimates which 
are larger than those resulting from one-hit extrapolation. Further,  whenever 
the data can be adequately described by the one-hit model, the two proce- 
dures will yield comparable results. This is true regardless of  the upper 
bound K selected for the number  of stages. 

The comparable behavior of  the multistage and one-hit procedures when 
applied to the ETU data is given in Table 4. Here, the multistage maximum 
likelihood estimates of  risk are far smaller than the one-hit estimates. This 
is primarily because the maximum likelihood estimate of the linear and 
quadratic terms q, and q2 were zero, which implies that  the multistage 
maximum likelihood risk estimates vary as the cube of  dose. However, the 
multistage upper confidence bounds vary linearly with dose: The resonable- 
ness of  such behavior has been discussed in some detail earlier by Guess et 
al. [14]. Small data shifts, which could occur with appreciable probability, 
would change the estimated linear term from exactly zero to a positive 
value, thereby forcing the multistage maximum likelihood estimates of  risk 
to vary linearly with dose instead of  as the cube of  dose. Thus, it is reason- 
able that  in the low dose range the multistage confidence bounds vary line- 
arly with dose even when the maximum likelihood estimates vary as the 
cube of  dose. 

T A B L E  4 

Es t ima tes  o f  low-dose risk f r o m  E T U  der ived f rom the  one-hit  and mul t i s tage  mode l s  

Dose  level M a x i m u m  l ike l ihood  95% Upper  c o n f i d e n c e  
(ppm)  e s t i m a t i o n  o f  l imits  on 

ex t ra  risk ex t ra  risk 

Mult is tage  One-h i t  Mul t is tage  One-h i t  
m o d e l  m o d e l  m o d e l  mode l  

i 0 - '  1.1 X I 0 - "  1.9 X 10 -4 3.7 X 10 -s 2.2 X 10 -4 

10 -2 1.1 X 10 -'4 1.9 X 10 -s 3.7 X 10 -6 2.2 X i0  -s 

10 -3 I . I  X 10 -'7 1.9 X 10 -6 3.7 X 10 -7 2.2 X 10 -6 

10-" 1.1 X 10 -2' 1.9 X 10 -7 3.7 X I 0 - '  2.2 X 10 -7 

In fact, a more precise examination of  the confidence limits based upon 
linearized and exact methods (Table 5) reveals that,  not  only do the multi- 
stage confidence bounds vary linearly at low doses, but the linearized and 
exact extrapolations agree to three significant digits for doses as large as 
50 ppm. 

The multistage confidence bounds on extra risk are smaller than the 
corresponding one-hit bounds by a factor of  about six (Table 4). We have 
already noted from an inspection of  Fig. 1 that the one-hit model seems 
likely to overestimate the risk. 
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TABLE 5 

Upper confidence limits on extra risk due to ETU derived from linearized and likelihood 
ratio extrapolat ion of  multistage model  

Dose level Maximum likelihood 95% Upper confidence 
(ppm) estimates of  limits on 

extra risk extra risk 

Linearized Likelihood ratio 
extrapolat ion extrapolat ion 

100 1.2 X I0-:  3.71123x I0-: 4.02546× I0 -2 
50 1.5 X 10 -3 1.85561X 10 -2 1.85833X 10 -2 
10 1.1 × 10 -5 3 .71123× 10 -3 3.70467 X 10 -3 

1 1.1 × 10 -8 3.71123X 10 -4 3 .71054× 10 -4 
0.1 1.1 X 10 - ' '  3.71123X 10 -s 3 .71116× 10 -s 
0.01 1.1 X 10 -'4 3.71123X 10 -~ 3 .71122× 10 -6 

In  T a b l e  6 a r e  e x h i b i t e d  v i r t u a l l y  sa fe  d o s e s  c o r r e s p o n d i n g  t o  95% levels  
o f  c o n f i d e n c e  c a l c u l a t e d  f o r  t h e  E T U  d a t a  a n d  t h e  H C B  m a l e  m i c e  d a t a .  
We  n o t e  t h a t  v i r t u a l l y  sa fe  d o s e s  v a r y  l i n e a r l y  w i t h  e x t r a  r i sk  f o r  b o t h  t h e  
o n e - h i t  a n d  m u l t i s t a g e  m o d e l s .  

T h e  E T U  d a t a  i l l u s t r a t e  t h e  a d v a n t a g e  w h i c h  t h e  use  o f  t h e  m u l t i s t a g e  
m o d e l  h a s  o v e r  t h e  o n e - h i t  m o d e l  in  t h e  s e t t i n g  o f  c o n f i d e n c e  l i m i t s :  T h e  
m u l t i s t a g e  m e t h o d o l o g y  y i e l d s  m o r e  r e a s o n a b l e  e s t i m a t e s  o f  r i sk  b y  p r o v i d -  
ing  b e t t e r  d e s c r i p t i o n s  o f  e x p e r i m e n t a l  d a t a ,  w h i l e  a t  t h e  s a m e  t i m e  r e t a i n -  
ing  t h e  l o w - d o s e  l i n e a r  p r o p e r t y  o f  t h e  c o n f i d e n c e  b o u n d s .  

TABLE 6 

Virtually safe doses corresponding to 95% levels of  confidence from two data sets 

HCB male hamster data ETU data 
(Table 1) (Table 2) 

Extra One-hit Multistage One-hit Multistage 
risk 

10 -4 4.0 X I0 -~ 4.1 X I0 -3 4.5 × 10 -2 2.7 × I0 -~ 

10 -5 4.0 × 10 -4 4.1 X I0 -4 4.5 X 10 -3 2.7 X 10 -2 

10 -6 4.0 × 10 -5 4.1 X I0 -s 4.5 × 10 -4 2.7 X 10 -3 

10 -~ 4.0 X 10 -~ 4.1 × 10 -~ 4.5 × 10 -s 2.7 X 10 -4 

T o  i l l u s t r a t e  t h e  a p p l i c a t i o n  o f  t h e  p r o c e d u r e  t o  m u l t i p l e  d a t a  se ts ,  w e  
have  a p p l i e d  i t  t o  t h e  c o m b i n e d  d a t a  c o n s i s t i n g  o f  t h e  m a l e s  a n d  f e m a l e s  
e x p o s e d  t o  HCB.  T h e  d a t a  f o r  f e m a l e s  a r e  in  T a b l e  7 a n d  v i r t u a l l y  sa fe  d o s e s  
c a l c u l a t e d  f r o m  t h e  c o m b i n e d  d a t a  as  wel l  as  f o r  m a l e s  a n d  f e m a l e s  c o n -  



TABLE 7 

Tumor incidence in female hamsters exposed to HCB in the diet [13] 
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Dietary Number Number of Expected number 
concentration of tumor-bearing of tumor-bearing 
(ppm) animals animals animals 

One-hit Multistage 

0 39 5 5 5 
50 30 16 14 14 

100 30 18 20 20 
2OO 60 52 52 52 

Maximum likelihood estimates of model parameters 

One-hit model Multistage model 

q0 = 0.1469 q0 = 0.1469 
~, =0.009286 ~, =0.009286 

q2 = 0.0 
~ = 0.0 

sidered separately are listed in Table 8. We no te  that ,  in this case, the  vir- 
tual ly  safe doses f rom the  c o m b i n e d  data  fell be tween  those  calculated for  
the  males and females separately.  It  could  also happen ,  and r ightly so, tha t  
virtually safe doses f rom combined  data sets could  be larger than  those  
calculated separately for  any  o f  the individual data  sets. This could  occur  
if b o t h  sets o f  data  gave very nearly the  same m a x i m u m  l ikel ihood es t imate  
o f  the safe dose since a combina t ion  o f  the  data  sets would  reduce  the  statis- 
tical variabili ty a b o u t  the  c o m m o n  m a x i m u m  l ikel ihood est imate.  This pro- 
cedure thus permits  the  s imul taneous  use o f  the  to ta l i ty  o f  the  data  f rom 
two  or  even more  exper iments  with equally acceptable  p ro toco ls  in the  cal- 
culat ion o f  virtually safe doses. 

C o m p u t e r  programs have been developed to pe r fo rm the calculat ions 
described in this paper.  The  program G L O B A L 8 2  calculates the  conf idence  

TABLE 8 

Multistage virtually safe doses corresponding to 95% levels of confidence calculated from 
HCB hamster data 

Extra Males Females Males and females 
risk only only combined 

10 -4 4.1 X 10 -3 8.5 X 10 -3 6.7 × 10 -3 

10 -5 4.1 × 10 ̀ 4 8.5 X 10 -4 6.7 X 10 -4 

10 -6 .4.1 X 10 -5 8.5 X 10 -s 6.7 X I 0  -s 

10 -~ 4.1 X 10 -6 8.5 X 10 -6 6.7 × 10 -6 
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bounds  for  a single data  set in addi t ion to pe r fo rming  several o ther  data  
analysis func t ions  described by Crump et al. [ 3 ] .  A separate bu t  similar 
p rogram is available to calculate conf idence  bounds  using several da ta  sets 
s imul taneously .  

Parallel risk assessment procedures  are available based u p o n  the  multi-  
stage model ,  bu t  which utilize t ime- to - tumor  in fo rma t ion  [7, 15, 1 6 ] .  
Whenever t ime- to - tumor  data are available, an appropr ia te  analysis based 
u p o n  such data  m a y  be preferable to  the  use o f  crude d i c h o t o m o u s  data  as 
discussed in this paper.  With t ime- to - tumor  data, compe t ing  risks can be 
t rea ted  p roper ly  and more  refined measures o f  risk can be est imated.  
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